Friday, 21 February 2014

Is beige the most common food colour?

For lunch I had a roast vegetable tagine with cous cous and I'm delighted to say that it was tasty with a pleasant zing to it.

Roast vegetable tagine with cous cous and flat bread
I am already regretting not making the most of the "Fryday" theme in the restaurant - it bought back happy memories of Aberdeen in the late 1990s.

Scottish haute cuisine on offer at the Diamond restaurant
At dinner I found myself pondering the question, is most food beige? That would certainly be my conclusion based on this week's food. And if it isn't beige it is red! Regardless, the leek and blue cheese fricassee with rice tasted good - definitely leeky, better than the over fried leeks earlier in the week - but it was an uninspiring beige colour. I'd rather have flavour than colour any day but both would be good.
Another beige Diamond dinner
Steffi and Liane at dinner - despite the faces we did enjoy the food!
On the science front, today has been a day of intense data processing. I started at 0830 and now it is 2250 and I've just finished. I have contour maps for the wave numbers that we're interested in for all my samples, the ratio of the wave number ranges, cluster analysis maps and component regression maps. The wave number contour maps highlight where we get a key carbonate peak that is present in all calcium carbonate and a peak that is not present in amorphous calcium carbonate (ACC). The ratio map shows the ratio of these. Our contention is that ACC is present where the calcite peak is absent. These maps depend on our judgement. To move away from that I did some statistical analysis as well. I used something called cluster analysis which essentially groups similar things together. By and large the cluster analysis suggests that the areas we think are ACC are more similar to each other than to the areas that we think are calcite. It doesn't confirm that the areas are ACC but it does indicate that they are distinct from the other areas. Good. PCA analysis seemed to indicate the same thing (but is more complicated so I have stuck to cluster analysis). To try and confirm that the areas are ACC I have also done some component regression. This involves having spectra of pure end member ACC and calcite and getting the computer to determine how much of each spectra is present in our contour maps. In theory the areas that we think are ACC should have a large amount of the standard ACC spectrum in them. At the moment these are giving mixed results and I think I might have the analysis wrong! Checking things is tomorrow morning's job. Then in the afternoon I want to see if I can spot any organics in the granules as well - the resin used to make the thin sections we've analysed may or may not stop us from doing this.

No comments:

Post a Comment